#### **Chapter Nine**

#### تصميم الوصلات الدائمية ( اللحام) (Welding) تصميم الوصلات الدائمية ( اللحام)

#### 9–1 Welding Symbols

A weldment is fabricated by welding together a collection of metal shapes. The welds must be precisely specified on working drawings, and this is done by using the welding symbol as shown in Fig. 9–1,



Type of weld

| - | Bead       | Fillet | Plug   | Groove      |              |           |          |   |  |  |
|---|------------|--------|--------|-------------|--------------|-----------|----------|---|--|--|
|   |            |        | slot   | Square      | V            | Bevel     | U        | J |  |  |
|   | $\bigcirc$ |        |        |             | $\sim$       | $\bigvee$ | Ŷ        | V |  |  |
|   |            |        | Figure | 9–2 Arc- an | d gas-weld s | ymbols.   |          |   |  |  |
|   |            |        |        | _           | → 60 ←       | H         | <u> </u> | → |  |  |
|   |            |        |        |             |              |           |          |   |  |  |
|   | 5          |        |        | ,           | / / 60       | )-200     |          |   |  |  |
|   | (a)        |        |        |             | (b)          | )         |          |   |  |  |

Figure 9–3:Fillet welds. اللحام التراكبي (*a*) The number indicates the leg size; the arrow should point only to one weld when both sides are the same. (*b*) The symbol indicates that the welds are intermittent and staggered 60 mm along on 200-mm centers







# 9–2 Butt and Fillet Welds

#### 1- Butt Welds

Figure 9–7*a* shows a single V-groove weld loaded by the tensile force F. For either tension or compression loading, the average normal stress is

$$\sigma = \frac{F}{hl} \tag{9-1}$$

From figure 9-7b, the average shearing stress is

$$\tau = \frac{F}{hl} \tag{9-2}$$

where h is the weld throat and l is the length of the weld, as shown in the figure. Note that the value of h does not include the reinforcement

## 2-Fillet Welds

Consider the external loading to be carried by shear forces on the throat area of the weld, Figure 9–11. By ignoring the normal stress on the throat, the shearing stresses are inflated sufficiently to render the model conservative.

For this model, the basis for weld analysis or design employs the shearing stress is:



*t* : the welding line throat

- *h* : the welding line height
- *l* : the welding line length

#### Example 9-1:

The figure shows a horizontal steel bar of thickness *h* loaded in steady tension and welded to a vertical support. Find the load *F* that will cause an allowable shear stress,  $\tau_{all} = 140 MPa$ , in the throats of the weld. b = 50 mm, d = 30 mm h = 5 mmSolution

Given, b = 50 mm, d = 30 mm, h = 5 mm,  $\tau_{all} = 140 MPa$ .



## 9-3 Stresses in Welded Joints in Torsion

Figure 9–12 illustrates a cantilever of length l welded to a column by two fillet welds. The reaction at the support of a cantilever always consists of a shear force V and a moment M.

The shear force produces a primary shear in the welds of magnitude

$$\tau' = \frac{V}{A} \tag{9-4}$$

where *A* is the throat area of all the welds.

The moment at the support produces *secondary shear* or *torsion* of the welds, and this stress is given by the equation

$$\tau^{\prime\prime} = \frac{Tr}{J} \tag{9-5}$$

Since the throat width of a fillet weld is 0.707*h*, the resulting second moment of area is then a *unit second polar moment of area*, the relationship between *J* and the unit value is

$$J = 0.707 h J_u$$
 (9-6)

 $J_u$  can be taken from table 9-1



Figure 9–12 Torsion in the welds

| Weld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Throat Area        | Location of G                                                           | Unit Second Polar<br>Moment of Area                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|
| 1. $\overrightarrow{C}$ $\overrightarrow{d}$ $\overrightarrow{T}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A = 0.707 hd       | $\overline{x} = 0$ $\overline{y} = d/2$                                 | $J_u = d^3/12$                                                       |
| 2. $( \leftarrow b \rightarrow)$<br>$\overrightarrow{y}$ $\overrightarrow{x}$ $( \leftarrow )$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A = 1.414hd        | $\overline{x} = b/2$ $\overline{y} = d/2$                               | $J_{u} = \frac{d(3b^2 + d^2)}{6}$                                    |
| 3. $b \longrightarrow b$<br>$\overline{y}$ $G$ $d$ $d$<br>$\overline{y}$ $\overline{x}$ $\overline{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A = 0.707h(b + d)  | $\overline{x} = \frac{b^2}{2(b+d)}$ $\overline{y} = \frac{d^2}{2(b+d)}$ | $J_{u} = \frac{(b+d)^{4} - 6b^{2}d^{2}}{12(b+d)}$                    |
| 4. $( \leftarrow b \rightarrow)$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A = 0.707h(2b + d) | $\overline{x} = \frac{b^2}{2b+d}$ $\overline{y} = d/2$                  | $J_{u} = \frac{8b^{3} + 6bd^{2} + d^{3}}{12} - \frac{b^{4}}{2b + d}$ |
| 5. $( + b \rightarrow )$<br>$\overrightarrow{y}$ $\overrightarrow{g}$ | A = 1.414h(b + d)  | $\overline{x} = b/2$ $\overline{y} = d/2$                               | $J_u = \frac{(b+d)^3}{6}$                                            |
| 6. (r G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $A = 1.414\pi hr$  |                                                                         | $J_a = 2\pi r^3$                                                     |

\*G is the centroid of weld group; h is weld size; plane of torque couple is in the plane of the paper; all welds are of unit width.

## Example

A 50-kN load is transferred from a welded fitting into a 200-mm steel channel as illustrated in Fig. 9-14. Estimate the maximum stress in the weld.

(a) Label the ends and corners of each weld by letter. See Fig. 9–15. Sometimes it is desirable to label each weld of a set by number.

(b) Estimate the primary shear stress  $\tau'$ . As shown in Fig. 9–14, each plate is welded to the channel by means of three 6-mm fillet welds. Figure 9-15 shows that we have divided the load in half and are considering only a single plate. From case 4 of Table 9-1 we find the throat area as

$$A = 0.707(6)[2(56) + 190] = 1280 \text{ mm}^2$$

Then the primary shear stress is

$$\tau' = \frac{V}{A} = \frac{25(10)^3}{1280} = 19.5 \text{ MPa}$$

(c) Draw the  $\tau'$  stress, to scale, at each lettered corner or end. See Fig. 9–16. (d) Locate the centroid of the weld pattern. Using case 4 of Table 9–1, we find

$$\overline{x} = \frac{(56)^2}{2(56) + 190} = 10.4 \text{ mm}$$

This is shown as point O on Figs. 9-15 and 9-16. (e) Find the distances  $r_i$  (see Fig. 9–16):

$$r_A = r_B = [(190/2)^2 + (56 - 10.4)^2]^{1/2} = 105 \text{ mm}$$
  
 $r_C = r_D = [(190/2)^2 + (10.4)^2]^{1/2} = 95.6 \text{ mm}$ 

These distances can also be scaled from the drawing.



Dimensions in millimeters.



#### Figure 9-16

Free-body diagram of one of the side plates.



(f) Find J. Using case 4 of Table 9–1 again, with Eq. (9–6), we get

$$I = 0.707(6) \left[ \frac{8(56)^3 + 6(56)(190)^2 + (190)^3}{12} - \frac{(56)^4}{2(56) + 190} \right]$$
  
= 7.07(10)<sup>6</sup> mm<sup>4</sup>

(g) Find M:

$$M = Fl = 25(100 + 10.4) = 2760 \,\mathrm{N} \cdot \mathrm{m}$$

(h) Estimate the secondary shear stresses  $\tau''$  at each lettered end or corner:

$$\tau_A'' = \tau_B'' = \frac{Mr}{J} = \frac{2760(10)^3(105)}{7.07(10)^6} = 41.0 \text{ MPa}$$
  
$$\tau_C'' = \tau_D'' = \frac{2760(10)^3(95.6)}{7.07(10)^6} = 37.3 \text{ MPa}$$
  
$$\tau_A = \tau_B = \sqrt{(19.5 - 41.0 \sin 25.64^\circ)^2 + (41.0 \cos 25.64^\circ)^2} = 37.0 \text{ MPa}$$
  
Similarly, for C and D,  $\beta = \tan^{-1}(10.4/95) = 6.25^\circ$ . Thus  
$$\tau_C = \tau_D = \sqrt{(19.5 + 37.3 \sin 6.25^\circ)^2 + (37.3 \cos 6.25^\circ)^2} = 43.9 \text{ MPa}$$
  
(k) Identify the most highly stressed point:

Answer

$$\tau_{\rm max} = \tau_C = \tau_D = 43.9 \text{ MPa}$$

### 9-4 Stresses in Welded Joints in Bending

Figure 9–17*a* shows a cantilever welded to a support by fillet welds at top and bottom. A freebody diagram of the beam would show a shear-force reaction V and a moment reaction M. The shear force produces a primary shear in the welds of magnitude

$$\tau' = \frac{V}{A} \qquad \dots \dots \dots \dots \dots (a)$$

where A is the total throat area.



**Figure 9–17:** A rectangular cross-section cantilever welded to a support at the top and bottom edges.

| Table 9-2: Bendin | g Properties | of Fillet | Welds* |
|-------------------|--------------|-----------|--------|
|-------------------|--------------|-----------|--------|

| Weld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Throat Area        | Location of G                                | Unit Second Moment of Area                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------|--------------------------------------------------------|
| $\overline{y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A = 0.707hd        | $\bar{x} = 0$ $\bar{y} = d/2$                | $l_{\nu} = \frac{d^3}{12}$                             |
| $\overrightarrow{y}$ $\overrightarrow{x}$ $\overrightarrow{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A = 1.414hd        | $\bar{x} = b/2$<br>$\bar{y} = d/2$           | $l_{u} = \frac{d^{3}}{6}$                              |
| $ \begin{array}{c c} \hline \bullet & \bullet & \bullet \\ \hline \hline & \bullet & \bullet \\ \hline \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A = 1.414hd        | $\bar{x} = b/2$<br>$\bar{y} = d/2$           | $l_u = \frac{bd^2}{2}$                                 |
| $\overrightarrow{y} \qquad \overrightarrow{g} \rightarrow{g} \rightarrow{g} \rightarrow{g} \rightarrow{g} \rightarrow{g} \rightarrow{g} \rightarrow{g} \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A = 0.707h[2b + d] | $\bar{x} = \frac{b^2}{2b+d}$ $\bar{y} = d/2$ | $l_v = \frac{d^2}{12} \{\delta b + d\}$                |
| $\frac{ }{\overline{y}}   \stackrel{\leftarrow b \rightarrow  }{ } \\ \frac{\overline{y}}{ } \\ \frac{ }{ } \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A = 0.707h(b + 2d) | $\bar{x} = b/2$ $\bar{y} = \frac{d^2}{b+2d}$ | $l_u = \frac{2d^3}{3} - 2d^2\bar{y} + (b+2d)\bar{y}^2$ |
| $\overrightarrow{y} \qquad \overrightarrow{x} \qquad x} \qquad \overrightarrow{x} \qquad $ | A = 1.414h(b + d)  | $\bar{x} = b/2$ $\bar{y} = d/2$              | $l_v = \frac{d^2}{6} [3b + d]$                         |



#### Example (Bending Welds) (P 9 - 48)

The figure shows a welded steel bracket loaded by a static force F. Estimate the factor of safety, if the allowable shear stress in the weld throat is 18 kpsi.



$$I_{u} = \frac{2d^{3}}{3} - 2d^{2}\overline{y} + (b+2d)\overline{y}^{2}$$

$$I_{u} = \frac{2\times5^{3}}{3} - 2(5^{2})(2) + (2.5 + 2(5))(2^{2}) = 33.33 \text{ in}^{3}$$

$$I = 0.707 \text{ h } I_{u} = 0.707 \left(\frac{1}{4}\right)(33.33)$$

$$= 5.891 \text{ in}^{4}$$

Primary shear:

$$\tau' = \frac{F}{A} = \frac{2}{2.209} = 0.905 \text{ kpsi}$$

*Secondary shear* (the critical location is at the bottom of the bracket):

$$y = 5 - 2 = 3 \text{ in}$$
  

$$\tau'' = \frac{My}{I} = \frac{2(5)(3)}{5.891} = 5.093 \text{ kpsi}$$
  

$$\tau_{\text{max}} = \sqrt{\tau'^2 + \tau''^2} = \sqrt{0.905^2 + 5.093^2}$$
  
=5.173 kpsi  

$$n = \frac{\tau_{\text{all}}}{\tau_{\text{max}}} = \frac{18}{5.173} = 3.48$$



Secondary shear:

$$\tau'' = \frac{Mr}{I} = \frac{500(10^{-3})(6)(1)}{0.353} = 8.50 \text{ kpsi}$$

The shear magnitude  $\tau$  is from the vector addition

$$\tau = (\tau'^2 + \tau''^2)^{1/2} = (0.472^2 + 8.50^2)^{1/2} = 8.51 \text{ kpsi}$$

Secondary shear:

Answer

$$\tau'' = \frac{Mr}{I} = \frac{500(10^{-3})(6)(1)}{0.353} = 8.50 \text{ kpsi}$$

The shear magnitude  $\tau$  is from the vector addition

$$\tau = (\tau'^2 + \tau''^2)^{1/2} = (0.472^2 + 8.50^2)^{1/2} = 8.51$$
 kpsi

The factor of safety based on a minimum strength and the distortion-energy criterion is

$$n = \frac{S_{sy}}{\tau} = \frac{0.577(50)}{8.51} = 3.39$$

Since  $n \ge n_d$ , that is,  $3.39 \ge 3.0$ , the weld metal has satisfactory strength. (b) From Table A-20, minimum strengths are  $S_{ut} = 58$  kpsi and  $S_v = 32$  kpsi. Then

$$\sigma = \frac{M}{I/c} = \frac{M}{bd^2/6} = \frac{500(10^{-3})6}{0.375(2^2)/6} = 12 \text{ kpsi}$$
$$n = \frac{S_y}{\sigma} = \frac{32}{12} = 2.67$$

Answer

Since  $n < n_d$ , that is, 2.67 < 3.0, the joint is unsatisfactory as to the attachment strength.

#### 9-5 The Strength of Welded Joints

The matching of the electrode properties with those of the parent metal is usually not so important as speed, operator appeal, and the appearance of the completed joint.

The properties of electrodes vary considerably, but Table 9–3 lists the minimum properties for some electrode classes. It is preferable, in designing welded components, to select a steel that will result in a fast, economical weld even though this may require a sacrifice of other qualities such as machinability.

Under the proper conditions, all steels can be welded, but best results will be obtained if steels having a UNS specification between G10140 and G10230 are chosen.

#### Example 9-2:

For the weldment shown in Fig., the electrode metal is E7010, what is the allowable load on the weldment? b = 50 mm, d = 30 mm h = 5 mmSolution:

From table 9-6 f = 513 N/mm $F = f \ l = 513[2(50)] = 51.3 \text{ kN}$ 



#### Table 9–3 Minimum Weld-Metal Properties

| AWS Electrode<br>Number* | Tensile Strength<br>kpsi (MPa) | Yield Strength,<br>kpsi (MPa) | Percent<br>Elongation |
|--------------------------|--------------------------------|-------------------------------|-----------------------|
| E60xx                    | 62 (427)                       | 50 (345)                      | 17-25                 |
| E70xx                    | 70 (482)                       | 57 (393)                      | 22                    |
| E80xx                    | 80 (551)                       | 67 (462)                      | 19                    |
| E90xx                    | 90 (620)                       | 77 (531)                      | 14-17                 |
| Elooxx                   | 100 (689)                      | 87 (600)                      | 13-16                 |
| E120xx                   | 120 (827)                      | 107 (737)                     | 14                    |

 Table 9–4 Stresses Permitted by the AISC Code for Weld Metal

| Mechanical Design  | Ch9: Welded Jo | ints 3rd year - Mechani          | 3rd year - Mechanical. Engineering |  |  |
|--------------------|----------------|----------------------------------|------------------------------------|--|--|
| Type of Loading    | Type of Weld   | Permissible Stress               | <b>n</b> *                         |  |  |
| Tension            | Butt           | 0.60S <sub>y</sub>               | 1.67                               |  |  |
| Bearing            | Butt           | 0.90Sy                           | 1.11                               |  |  |
| Bending            | Butt           | 0.60-0.66Sy                      | 1.52-1.67                          |  |  |
| Simple compression | Butt           | 0.60S <sub>y</sub>               | 1.67                               |  |  |
| Shear              | Butt or fillet | 0.305 <sup>†</sup> <sub>ut</sub> |                                    |  |  |

\*The factor of safety *n* has been computed by using the distortion-energy theory.

<sup>†</sup>Shear stress on base metal should not exceed  $0.40S_{\nu}$  of base metal.

| Type of Weld                    | K <sub>fs</sub> |
|---------------------------------|-----------------|
| Reinforced butt weld            | 1.2             |
| Toe of transverse fillet weld   | 1.5             |
| End of parallel fillet weld     | 2.7             |
| T-butt joint with sharp corners | 2.0             |

# **IMPORTANT NOTES**

- The best welded steels have a tensile strength in the hot-rolled condition in the range of 410 to 480 MPa, so a cold-drawn bar has its cold-drawn properties replaced with the hot-rolled properties in the vicinity of the weld.
- Table 9–3 lists the minimum properties for some electrode classes.
- It is important to observe that the electrode material is often the strongest material present a welded joint.
- Table 9–4 lists the formulas specified by the code for calculating these permissible stresses for various loading conditions
- Finally, remembering that the weld metal is usually the strongest, do check the stresses in the parent metals.

| Sched                     | ule A: Allo                                                             | wable L                    | oad for \                  | /arious S                | izes of F            | illet We       | ds      |
|---------------------------|-------------------------------------------------------------------------|----------------------------|----------------------------|--------------------------|----------------------|----------------|---------|
|                           |                                                                         | Strength Le                | evel of Wel                | d Metal (E               | XX)                  |                |         |
|                           | 60*                                                                     | 70*                        | 80                         | 90*                      | 100                  | 110*           | 120     |
| "                         | Allowa                                                                  | ble shear st<br>or partial | ress on thr<br>penetration | oat, MPa c<br>1 groove w | of fillet wel<br>eld | d              |         |
| τ =                       | 124                                                                     | 145                        | 165                        | 186                      | 207                  | 228            | 248     |
|                           | All                                                                     | owable Uni                 | t Force on                 | Fillet Weld              | 1, N/mm              |                |         |
| $^{\dagger}f =$           | 87.67 <i>h</i>                                                          | 102.52 <i>h</i>            | 116.66h                    | 131.5h                   | 146.35h              | 161.2 <i>h</i> | 175.34h |
| Leg<br>Size <i>h</i> , mm | LegAllowable Unit Force for Various Sizes of Fillet WeldsSize h, mmN/mm |                            |                            |                          |                      |                |         |
| 25                        | 2192                                                                    | 2563                       | 2916                       | 3288                     | 3659                 | 4030           | 4383    |
| 22                        | 1929                                                                    | 2255                       | 2566                       | 2893                     | 3220                 | 3546           | 3857    |
| 20                        | 1753                                                                    | 2050                       | 2333                       | 2630                     | 2927                 | 3224           | 3506    |
| 16                        | 1403                                                                    | 1640                       | 1866                       | 2104                     | 2342                 | 2579           | 2805    |
| 12                        | 1052                                                                    | 1230                       | 1400                       | 1578                     | 1756                 | 1934           | 2104    |
| 11                        | 964                                                                     | 1127                       | 1283                       | 1447                     | 1610                 | 1773           | 1927    |
| 10                        | 877                                                                     | 1025                       | 1167                       | 1315                     | 1463                 | 1612           | 1753    |
| 8                         | 701                                                                     | 820                        | 933                        | 1052                     | 1171                 | 1290           | 1403    |
| 6                         | 526                                                                     | 615                        | 700                        | 789                      | 878                  | 967            | 1052    |
| 5                         | 438                                                                     | 513                        | 583                        | 658                      | 732                  | 806            | 877     |
| 3                         | 263                                                                     | 308                        | 350                        | 395                      | 439                  | 484            | 526     |
| 2                         | 175                                                                     | 205                        | 233                        | 263                      | 293                  | 322            | 351     |

Table 9-6

\*Fillet welds actually tested by the joint AISC-AWS Task Committee.

 $^{\dagger}f = 0.707 h \tau_{all}$ 

Example 9-3 (Torsion welds) (P 9-17)

A steel bar of thickness h, to be used as a beam, is welded to a vertical support by two fillet welds as shown in the figure.

(a) Find the safe bending force F if the allowable shear stress in the welds is tallow.

(b) In part a, you found a simple expression for F in terms of the allowable shear stress. Find the allowable load if the electrode is E7010, the bar is hot-rolled 1020, and the support is hot-rolled 1015.

#### Solution

(a) b = d = 50 mm, c = 150 mm, h = 5 mm, and  $\tau_{all} = 140$  MPa Primary shear, from Table 9-1, Case 2 Note: *b* and *d* are interchanged between problem figure and table figure. Note, also, *F* in kN and  $\tau_{all}$  in MPa

utationant Design, D412. The James F. Linc



 $J = 0.707 h J_u = 0.707(5)(83333)$  $= 294626 \text{ mm}^4$ 



# **EXAMPLE 9–5**

A 12 mm by 50 mm rectangular-cross-section 1015 bar carries a static load of 73 kN. It is welded to a gusset plate with a 10 mm fillet weld 50 mm long on both sides with an E70XX electrode as depicted in the figure. Use the welding code method.

(a) Is the weld metal strength satisfactory?





# Solution

(*a*) From Table 9–6, (من الكتاب).

Allowable force per unit length for a 10 mm E70 electrode metal is 1025 N/mm of weldment; thus

F = 1025l = 1025(50x2) = 102.5 kN

 $\tau_{all}^2 = (\tau'' \sin \theta + \tau')^2 + (\tau'' \cos \theta)^2$  $= (21F\cos 45 + 2.829F)^2 + (21F\sin 45)^2$  $\tau_{all} = 23.1F$  (\*) 140 = 23.1F $F = 6.06 \, kN$ (b): (weld strength) For **E7010**  $\tau_{all}$  = 145 MPa (Table 9-6) **1020 HR bar**: $S_u = 380 MPa$ ,  $S_y = 210 MPa$ support  $S_{\mu} = 340 MPa$ ,  $S_{\nu} =$ 1015 HR 190 MPa **E7010**  $S_u = 482 MPa, S_v = 393 MPa$  (Table 9-3) The support controls the design.  $\tau_{all} = (0.3S_u \text{ or } 0.4S_v) =$ Table 9-4: 0.3(340) or 0.4(190) = (102 or 76)select  $\tau_{all} = 76 MPa$ The allowable load, from Eq. (\*) is  $\tau_{all} = 23.1F \rightarrow 76 = 23.1F \rightarrow F = 3.29 \ kN$ 

Since 102.5 > 73 kN, weld metal strength is satisfactory.

(b) Check shear in attachment adjacent to the welds.

 $S_y = 190 \text{ MPa}$  (Table A-20)

The allowable attachment shear stress is From Table 9–4

$$\pi_{all} = \begin{cases} 0.4S_y = 0.4(190) = 76 MPa \\ 0.3S_u = 0.3(340) = 102 MPa \end{cases}$$

$$\tau_{all} = 76 MPa$$

The shear stress  $\tau$  on the base metal adjacent to the weld is

$$\tau = \frac{F}{2hl} = \frac{73000}{2(10)(50)} = 73 \, MPa$$

Since  $\tau_{all} \geq$ , the attachment is satisfactory near the weld beads.

The tensile stress in the shank of the attachment is

$$\sigma = \frac{F}{tl} = \frac{73000}{12(50)} = 122 \, MPa$$

prepared by Dr. Hazim Khaleel

The allowable tensile stress  $\sigma_{all}$ , from Table 9–4, is  $0.6S_{\nu}$  and, with welding code safety level preserved,

$$\sigma_{all} = 0.6S_v = 0.6(190) = 114 MPa$$

Since  $\geq \sigma_{all}$ , the shank tensile stress is not satisfactory

# PROBLEMS

to

To overcome this problem a new dimensions or new material may be selected. let  $\sigma =$  $\sigma_{all} = 114 \text{ MPa}$ 

$$\sigma = \frac{F}{tl} = \frac{73000}{t(50)} = 114$$
 MPa

[Ans]

t = 12.8 mm, say 13 mm

9-1 The figure shows a horizontal steel bar of thickness h loaded in steady tension and welded to a vertical support. Find the load F that will cause an allowable shear stress,  $\tau_{\text{allow}}$ , in the throats 9\_4 of the welds.



9-5 to For the weldments of Probs. 9-1 to 9-4, the electrodes are specified in the table. For the elec-9-8 trode metal indicated, what is the allowable load on the weldment?

| Problem<br>Number | Reference<br>Problem | Electrode |
|-------------------|----------------------|-----------|
| 9-5               | 9–1                  | E7010     |
| 9–7               | 9–3                  | E7010     |
|                   |                      |           |

9-9 to The materials for the members being joined in Probs. 9-1 to 9-4 are specified below. What 9-12 load on the weldment is allowable because member metal is incorporated in the welds?

| Problem<br>Number | Reference<br>Problem | Bar     | Vertical<br>Support |
|-------------------|----------------------|---------|---------------------|
| 9_9               | 9-1                  | 1018 CD | 1018 HR             |
| 9–11              | 9–3                  | 1035 HR | 1035 CD             |
|                   |                      |         |                     |

9-17 A steel bar of thickness h, to be used as a beam, is welded to a vertical support by two filletto welds as shown in the figure.

- **9–20** (a) Find the safe bending force F if the allowable shear stress in the welds is  $\tau_{\text{allow}}$ .
  - (b) In part a, you found a simple expression for F in terms of the allowable shear stress. Find the allowable load if the electrode is E7010, the bar is hot-rolled 1020, and the support is hot-rolled 1015.





9-21 The figure shows a weldment just like that for Probs. 9–17 to 9–20 except there are four welds instead of two. Find the safe bending force F if the allowable shear stress in the welds is τ<sub>allow</sub>.

| Problem<br>Number | Ь     | c      | d     | h    | $	au_{ m allow}$ |
|-------------------|-------|--------|-------|------|------------------|
| 9-21              | 50 mm | 150 mm | 50 mm | 5 mm | 140 MPa          |
| 9–23              | 50 mm | 150 mm | 30 mm | 5 mm | 140 MPa          |

9\_



9-25 The weldment shown in the figure is subjected to an alternating force F. The hot-rolled steel bar has a thickness h and is of AISI 1010 steel. The vertical support is likewise AISI 1010 HR
9-28 steel. The electrode is given in the table below. Estimate the fatigue load F the bar will carry if three fillet welds are used.

| Problem<br>Number | Ь     | d     | h    | Electrode |
|-------------------|-------|-------|------|-----------|
| 9–25              | 50 mm | 50 mm | 5 mm | E6010     |
| 9–27              | 50 mm | 30 mm | 5 mm | E7010     |



Problems 9–25 to 9–28



**9–29** The permissible shear stress for the weldment illustrated is 140 MPa. Estimate the load, F, that will cause this stress in the weldment throat.

Problem 9-29

**9–31** A steel bar of thickness h is subjected to a bending force F. The vertical support is stepped such that the horizontal welds are  $b_1$  and  $b_2$  long. Determine F if the maximum allowable shear stress is  $\tau_{\text{allow}}$ .



**9–34** The attachment shown in the figure is made of 1018 HR steel 12 mm thick. The static force is 100 kN. The member is 75 mm wide. Specify the weldment (give the pattern, electrode number, type of weld, length of weld, and leg size).

